Analytical Chemistry

A CONTINUOUSLY CIRCULATING HYPERPOLARIZED XENON NMR
APPARATUS TO PRODUCE HIGH 129 Xe POLARIZATION FOR SPINOE
ENHANCEMENT EXPERIMENTS. Jonathan D. Prange, Kevin J. Knagge, Daniel
Raftery*, Purdu > University, Department of Chemistry, 1393 Brown Building, 560 Oval
Drive, West Lafayette, IN 47907, jprange@purdue.edu.

ABSTRACT

Nuclear Magnetic Resonance (NMR) Spectroscopy has become a powerful analytical tool in recent years for solid state chemistry studies. However, studying surfaces using NMR is challenging because of the low sensitivity. Optical Pumping allows for a method to dramatically increase the NMR signal from surface nuclei. In this investigation, ¹² Xe is optically polarized via a laser within a continuously re-circulating apparatus. Using this experimental setup, enhancements of up to 69% ¹²⁹Xe polarization was achieved 2 minutes after circulation. This polarization was then transferred to ²⁹Si nuclei of porous Si samples and examined with NMR. Enhancement signals from ²⁹Si atoms via the Spin Polarization Induced Nuclear Overhauser Effect (SPINOE) were 8-32 times the normal signal. SPINOE experiments conducted with ¹²⁹Xe to ¹³C polarization transfer in ¹³CD₃OD on low surface area titania coated fibers yielded an enhancement of 14 times.